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We discuss a proposed morphology-selection principle and the implied concepts of the morphology

diagram and morphology transitions.

We use a diffusion transition scheme to demonstrate that

morphology transitions can be characterized by a change in the functional form of the growth
velocities and a change in the the envelope shapes. Our main support of the present picture is the
demonstration of the coexistence of two morphologies, tip splitting and dendritic growth.

PACS number(s): 64.60.—i, 05.70.Ln, 64.70.Dv, 02.70.Rw

I. INTRODUCTION

With the discovery of the “microscopic solvability” cri-
terion [1,2], the problem of dendritic growth was widely
believed to be solved [3,4]. There was already an under-
standing of the basic mechanisms controlling either den-
dritic growth or tip-splitting growth. Yet, this was far
from being the full picture. According to the solvability
criteria, as long as anisotropy is present, needle-crystal
solutions exist for any value of undercooling. However,
in numerical simulations and in experiments it was found
that, as the undercooling is changed at some critical
value, the emerging pattern is no longer dendritic. In-
stead, tip splitting occurs [5-9]. The observation of the
dense-branching morphology (DBM) under growth con-
ditions, for which we know (according to the solvability
criteria) that dendritic growth can exist, means that the
two morphologies theoretically coexist. Thus, the micro-
scopic solvability can clearly be only part of the picture,
and a more general principle is needed to distinguish be-
tween different morphologies and to determine the one to
be selected [10].

Motivated by experimental observations of pattern de-
termination in the Hele-Shaw cell, Ben-Jacob et al. have
proposed the existence of a morphology-selection princi-
ple [11]: in the presence of anisotropy, both tip-splitting
and dendritic solutions exist, but the fastest growing
morphology is the dynamically selected one. In general,
if more than one morphology is a possible solution, only
the “fastest growing morphology” is nonlinearly stable
and will be observed.

The existence of a morphology-selection principle im-
plies the existence of a morphology diagram, in analogy
with phase diagrams in equilibrium. It further implies
the existence of morphology transitions; that is, a sharp
transition between morphologies occurs with a varying
of the growth conditions. Similarly, observations of a
sharp transition between morphologies would imply the
existence of a morphology-selection principle.

Clearly different shapes are observed for the same sys-
tem as we vary the control parameter (e.g., undercooling,
supersaturation, etc.). However, observation of different
shapes is necessary but by no means a sufficient condi-
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tion to imply the existence of a morphology diagram. The
simpler possibility is that the change in shape is merely a
crossover and not a transition. That is, for each value of
the driving force a unique solution (shape) exists. This
being the case, the observed shapes can still be organized
on the space of the controlled parameters (e.g., concen-
tration and applied voltage for electrochemical deposi-
tion, anisotropy, and applied pressure for the Hele-Shaw
cell, etc.). Moreover, various shapes can be classified and
the parameter space can be divided into rough regimes
according to the classification. However, in this case the
boundaries between these regimes are fuzzy and there
are no sharp transitions as the boundaries are crossed
(by varying the growth parameters). Theoretically, the
most important point is that for this case there is no need
for the existence of a morphology-selection principle.

At present, morphology diagrams have been con-
structed for various experimental systems [5-9,12,13].
Unfortunately these findings are not sufficient to prove
the existence of a selection principle, as the observed
boundaries are quite fuzzy (presumably because of a high
noise level). It is practically impossible to distinguish
between a sharp crossover and a smeared (due to noise) -
transition. As a step to resolve this problem it was pro-
posed to use the growth velocity as a response function
and to correlate changes in the velocity with changes in
the shape. Indeed, both changes in the slope of the ve-
locity (as function of the driving force) and even jumps
in its value were observed upon crossing the boundaries
between morphologies [10-14]. Recently, Brener et al.
[15] studied morphology diagrams and morphology tran-
sitions using scaling arguments and Ihle and Miiller-
Krumbhaar [16] studied these issues in the context of
the free boundary model.

The theoretical framework presented above is still met
with considerable scepticism. The main argument is
that tip splitting is not a “real” solution but is observed
merely because the system has a high level of noise.
Hence, for some range of the parameters while the needle-
crystal solution (obtained from the microscopic solvabil-
ity) is linearly stable, it breaks into a tip-splitting growth
due to nonlinear instability. According to this view,
there is no morphology transition, but simply a crossover
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from dendrites to tip splitting when noise dominates the
growth.

Naturally, the best demonstration of the morphology-
selection principle would be to show the existence of both
morphologies for regimes where we usually observe only
one of them. As we know theoretically that dendritic
growth exists for regimes where DBM is observed, we
specifically would like to demonstrate the existence of
DBM where usually dendrites are observed. The purpose
of this paper is to do exactly that.

II. ENVELOPE DYNAMICS

Recently, we have studied morphology transitions us-
ing the diffusion-transition model inspired by solidifica-
tion from a supersaturated solution [17]. It is a hy-
bridization of the “atomistic” and the continuous ap-
proaches. The dynamics of the model consists of two
alternating stages: (1) Solving the linear diffusion equa-
tion for the concentration field. (2) Performing discrete
phase-transition processes at the interface. We divide
the phase-transition process into local processes of the
solidification and melting of single cells. Only liquid cells
adjacent to the solid can solidify and only solid perimeter
cells can melt. The processes of phase transition and dif-
fusion are executed sequentially on a square lattice. For
more details see Ref. [17].

Both tip splitting and dendritic growth can be ob-
served as we vary the level of supersaturation. In
Figs. 1(a) and 1(b) we show two such realizations of late-
stage growth. Looking at the two shapes, we can easily
distinguish one from the other. The task becomes harder
for shapes grown close to the transition point, which is
actually the interesting regime to study. A second look
will reveal that we can draw an envelope around each of
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FIG. 1. (a) Typical realization of dense-branching growth.
(b) Typical realization of dendritic growth. (c) Time sequence
of an ensemble-averaged envelope of dense-branching growth
over 30 different realizations. The envelope is shape preserv-
ing, convex, and shows a pronounced fourfold symmetry. (d)
Time sequence of an ensemble-averaged envelope of dendritic
growth. In this case, the envelope is concave.
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the shapes (one of the equal concentration curves close to
the solid can be used). Doing so, it becomes clear that the
shapes of the DBM and the dendritic envelopes are differ-
ent: convex for the first and concave for the second. This
observation suggests the use of the envelope as our tool
for the geometrical characterization of the morphologies.
For both morphologies the envelope is shape preserving
and propagates at constant velocity, as demonstrated in
Figs. 1(c) and 1(d). Here the envelope is ensemble av-
eraged. Thirty different realizations were grown for each
set of growth conditions and the envelope was defined to
be the 0.5 contour curve of the projection of all realiza-
tions. (Keep in mind that the solid concentration in the
model is defined to be 1.) Clearly, such a definition of
the envelope is not practical for experimental observa-
tions. Alternatively, since we know that the envelope is
shape preserving and advances at constant velocity, we
can also construct the envelope for a single growth real-
ization by projection of the scaled (by the radius) shapes
at different time steps, as is demonstrated in Fig. 2. The
time-scaled envelope is much rougher than the ensemble-
averaged envelope since Kardar-Parisi-Zhang (KPZ)-like
fluctuations do not decay [18]. In order to reveal the
smooth envelope for the single realization, one may use
the fact that the growing pattern’s symmetry reflects the
lattice anisotropy. Therefore, in our case, we can average
over the fourfold symmetry and reveal a smooth envelope
similar to the ensemble-averaged one.

In Fig. 3 we show how the average envelope changes as
a function of the driving force (the chemical potential dif-
ference), from concave for dendrites to convex for DBM.
The shape of the envelope also describes the angle de-
pendence of the velocity, v(6) (6 is the angle). Regarding
the shape as an equilibrium shape, we can perform the in-
verse Wulff construction to calculate an effective dynam-
ical interfacial energy as a function of 6. For dendrites,
the concave regimes at 45° of the main growth directions
correspond to a multivalued effective interfacial energy.
It can be understood as follows: the 45° regimes can be
filled equally by sidebranches emitted from main trunks
on either sides. Hence, if we consider the dynamical in-
terfacial energy for the envelope as a function describing
the the dynamics of sidebranches, it should be multival-
ued at 45°. In other words, a concave envelope goes hand
in hand with underlying orientation of the sidebranches
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FIG. 2. (a) Ensemble-averaged envelope. (b) Time scaled
averaged envelope of single realization. It has much higher
fluctuations and demonstrates the long “lifetime”of the ini-
tial deformations. (c) Time scaled averaged envelope for a
single realization with averaging over the lattice symmetry.
By this method one may reveal a smooth envelope using just
one realization.
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FIG. 3. The envelope shapes and growth velocity v as func-
tion of the driving force Au (log-log plot). The envelope
shapes drawn at the bottom are ensemble averaged over 30
different realizations and change from concave (for dendrites)
to convex (for DBM). Least-squares-fit changes from 1.5 for
dendrites to 3.0 for DBM. w = 8000, —u,/T = 2.83 — 5.26,
Ep/T = 2.66, D = 10* co = 0.7, and the system size is
400 x 400.

and can be used to distinguish between DBM and den-
dritic growth. The switching of the effective interfacial
energy from being multivalued to single-valued at the
transition point provides additional support to the idea
of morphology transitions.

III. VELOCITY AS A RESPONSE FUNCTION

It was proposed that, as the average velocity measures
the rate of approach towards equilibrium, it might serve
as a response function [10,11]. By the term “average ve-
locity” one should refer to the velocity weighted accord-
ing to the geometry of the interface, and thus take into
account the global shape of the object. The motivation
was as follows: For solidification from the supersaturated
solution the entropy production (per unit length) at the
interface (denoted here by I') is proportional to vApu;,
where Ayp; is the chemical potential difference between
the solid chemical potential and the liquid chemical po-
tential at the interface.

A fundamental question is whether I' is the only vari-
able; i.e., whether T' plays a role analogous to the free
energy of systems in equilibrium, or whether there are
two parts, one of them I' and the other, let us name it
), is a measure of the microscopic and mesoscopic level
organization (i.e.,  is a measure of the static proper-
ties). In this view, I" is analogous to the entropy and 2
(which is yet to be defined) is the analogue of the internal
energy.

In Fig. 3 we show the functional dependence of the
DBM and dendrite’s maximal velocities on the driving
force Ap. Here Ay is the difference between the solid
chemical potential and the liquid chemical potential at
infinity. Each point on the graph indicates the averaged
velocity (in the 45° direction) over 30 realizations. The
error bars indicate the standard deviation of the mea-
surements. Although the range of Ay is too small for
accurate measurements of the exponent, clearly the ve-
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FIG. 4. The channels used for simulations. (a) Channel
along the 45° orientation of the lattice. (b) Channel along
the 0° orientation of the lattice.

locity has a different functional dependence for the two
morphologies. It appears to scale as

(Ap)® DBM
v { (Ap)t-® dendrites. (1)

The different scaling of the velocity indicates that in-
deed the velocity, hence I, is a suitable candidate to serve
as a response function. Moreover, the two lines (Fig. 3)
cross exactly at the transition point from the concave to
the convex envelope (Ap. ~ 4).

IV. MORPHOLOGY COEXISTENCE

The next step in the study of morphology selection is
to demonstrate morphology coexistence. To this end we
have simulated the growth in a channel geometry. Two
different channels were used: (a) A channel along the
preferred direction for dendritic growth [45° off the lat-
tice directions—Fig. 4(a)]. (b) A channel along the lat-
tice direction [Fig. 4(b)]. The growth velocities for these
channels are presented in Fig. 3. In simulations of growth
in the first channel (a) the growth velocity follows that
of the open geometry for all ranges of parameters. For
Ap < Ap. dendritic morphology is observed and the
growth velocity is the same as the growth velocity for
the open geometry (i.e., v oc Au!®). For higher Ap,
DBM is observed and the growth velocity is, again, the
same as for the open geometry (i.e., v oc Ap39).

The simulation of growth in the second channel

FIG. 5. The effect of the growth geometry on the morphol-
ogy. The two stroboscopic pictures also show the difference
in growth velocity between both morphologies, as the time
elapsed between two consecutive snapshots is the same in
both plots. (w = 8000, —us/T = 2.8, Eg/T = 2.66, D = 10*,
Coo = 0.7, and the system size is 400 x 400.) (a) Tip-splitting
growth is observed in a channel. (b) Dendritic growth is ob-
served for the same parameter in a channel. The total simu-
lation steps are half of those for (a), as the velocity is much
higher.
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FIG. 6. Growth starting from a narrow channel and spread-
ing into a wider channel. (a) DBM growth is observed in the
narrow part while dendritic growth with pronounced 45° ori-
entation is observed in the wider part. (b) The maximum
height of the pattern vs time. For the narrow channel the
growth velocity is slower and fits the v o« Ap®*? line. In
the wider channel, the growth velocity is faster and fits the
v oc Ap'-® line.

[Fig. 4(b)] leads to the expected result: DBM is observed
for all range of parameters as the dendritic growth is
suppressed by the geometrical constraints (see Fig. 5).
Furthermore, the growth velocity for all values of Ayu fol-
lows the scaling of the DBM growth (v o« Ap®). This
is our demonstration of the coexistence of the two mor-
phologies.

We further connected a narrow channel with a wider
one. Growth patterns for parameters of the original den-
dritic regime are presented in Fig. 6(a). The simulation
was started from an initial seed at the narrow part of
the channel. At the beginning, inside the narrow chan-
nel, tip-splitting growth occurs. The growth velocity
[Fig. 6(b)] for the narrow part fits the v oc Ap3° line
of the open-geometry DBM regime. At the widening
point of the channel, there is less competition between
the fingers, and dendritic growth at 45° is observed. The
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growth velocity at this stage switches to fit the v oc Ap!-®
of the dendritic regime. In the wider channel, as some
of the fingers are more advanced into the liquid than
the other ones, dendritic morphologies may continue in
a zig-zag-like growth. As the growth simulation is based
on a stochastic process, we have also observed (usually in
wide channels) spontaneous transitions between dendritic
growth and tip-splitting growth. In some rare cases, the
growth in the narrow channel may be dendritic due to
a spatial fluctuation in which one of the fingers shoots
out and emits sidebranches. These rare simulation re-
sults are included in the standard deviation calculation
for the channel simulations in Fig. 3.

To conclude, our observations provide a strong support
for the coexistence of DBM and dendritic growth. Hence,
the “microscopic solvability” can clearly be merely a part
of the picture, and a more general selection principle is
needed to select one of the morphologies. The “fastest
growing” selection principle seems to hold for many cases.
Yet, further studies are required to identify its range of
applicability.
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